

Dyneema® 3T rope model for accurate mooring analysis with Deeplines WindTM - **the key to improved accuracy and reduced risks -**

Introduction:

A specific type of properties for Dyneema® DM20 ropes has been implemented into DEEPLINES. Input data provided by DSM are introduced as an external encrypted file (Dyneema® 3T rope model).

This file contains information which allows an automatic update of the Dyneema[®] rope dynamic stiffness and structural damping during a time domain simulation accounting for the temperature, the loading frequency and the average axial strain experienced by the rope.

To get access to this feature, you have to:

- Use DEEPLINES version V5R7 (contact: deeplines@principia.fr);
- On the DSM website a request can be submitted to obtain Dyneema® 3T rope model as an encrypted file.

https://www.dsm.com/dyneema/en_GB/company-info/other-request.html

Model input data:

The mooring model is defined as a classical mooring pattern in DEEPLINES. A mooring line may be composed of segments of different types. Segments made of Dyneema® fiber ropes are given dedicated properties.

As illustrated below, Dyneema® fiber rope properties are associated with classical bar elements in DEEPLINES except that:

- Option Synthetic is checked.
- A specific input file is selected (encrypted file provided by DSM).

In addition to this encrypted file, users must define:

- The linear mass (kg/m),
- the so-called "static" axial stiffness (N): This reference stiffness value to be defined in accordance with DSM. Unless otherwise specified, the reference stiffness is the dynamic stiffness of the rope at 23°C, 1Hz and mean strain of 1%, i.e. $EA_{dynamic=}AE_{ref,23°C.1Hz.1\%}$. A classical value of 65MBL is often considered. More accurate input to the reference stiffness can be obtained by DSM or with your rope or tendon producer of choice.
- the outer diameter and the hydrodynamic (or aerodynamic) coefficients to compute hydrodynamic (aerodynamic) loads,

Other data may be defined as options:

- the submerged weight in N/m,
- temperature and thermal properties,
- post-processing data.

Computation principles:

From a practical point of view, the simulation is split into time windows, which duration is to be fixed by the user, and results of a time window $[t_{i-1}, t_i]$ are used to determine the dynamic stiffness and damping for the next sequence $[t_i, t_{i+1}]$ as illustrated below.

Note: the sequence duration is to be defined by the user with a dedicated keyword. Example:

**SYNTHOPT*

Ioption_dyneema Tstart Tend Twindow 1 0 1000 200 0.

When computations start, the reference stiffness (static stiffness) is used. Then tensions and strains computed at all arc lengths of a line are stored during each sequence $[t_i, t_{i+1}]$.

At time step t_{i+1} , the dynamic stiffness and damping to be used for the next sequence $[t_{i+1}, t_{i+2}]$ are evaluated as such:

- Get the zero up-crossing period T_z over $[t_i, t_{i+1}]$ at each arc length along the line;
- Get the temperature $T(^{\circ}C)$ at t_{i+1} in case a variation in depth or in time is defined ;
- Get the average strain over $[t_i, t_{i+1}]$;
- By convention, f=1/T*^z* is supposed to represent the average loading frequency;

• Compute the updated axial stiffness as such :

$EA = EA(T, f, \varepsilon)$

Where $EA(T, f, \varepsilon)$ is function derived from DSM input data

- Update the damping term considering a Rayleigh damping matrix $C=aM+bK$, with: *a* and derived from DSM input data
- •
- Use updated values for sequence $[t_{i+1}, t_{i+2}]$

