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1 Models for HAWTs 

1.1 Blade Element Momentum (BEM) 

The Blade Element Momentum theory is the most frequently used theory to predict 
performances of Horizontal Axis Wind Turbines (HAWT) and to predict loads applied on 
blades ( [1], [2], [3]). The goal of this theory is to identify loads applied by a steady-
homogeneous-incompressible flow (Mach ≤ 0.3) on a disk representing the area swept 
by the rotor of a wind turbine (Momentum theory). In parallel to this, power recovered 
by the wind-turbine rotor according to the wind velocity at the rotor is calculated (Blade 
Element theory). Finally, an iterative calculation is done until the force applied by the 
wind on the disc corresponds to the force recovered by the rotor. 

1.2 Momentum theory 

1.2.1 One-dimensional momentum theory 

A stream tube whose section is equal to the section of the rotor at the rotor location is 
assumed. The flow being assumed incompressible, the velocity and the section are 
directly proportional. The wind kinetic energy is recovered by the rotor, therefore the 
wind velocity is lower downstream of the turbine. Thus, this stream tube (Figure 1) has 
a smaller section than the rotor section in the upstream region (i.e. a higher velocity) 
and a larger section than the rotor section in the downstream zone (i.e. a lower 
velocity). 

 

 

Figure 1: Trajectory of an air particle passing through the 
rotor disc [4] 

 

A stream tube with pressures and velocities described in Figure 2 is assumed. If � is the 
thrust force, we can write: 

� = ���� − ��	. (1) 

Using the mass flow rate, � (� = ���), we can rewrite the above equation as: 

� = ������	� − ������	� , (2) 

where � and � are respectively the fluid density and the disk section. 

Applying the Bernoulli law upstream and downstream of the disk, one obtains the 
following relationships: 
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��� + 12���� = ��� + 12������� + 12���� = �� + 12���� . (3) 

The thrust force can be obtained with the pressures on each side of the disk by: 

� = ����� − ���	. (4) 

Consequently, using the Bernoulli law, we can write: 

� = 12������ − ��� 	. (5) 

 

 

Figure 2: An energy extracting actuator disc and stream-tube [4] 

 

Using Equation 1, the mass flow rate written at the actuator disk (�	 = 	 ����	�), and 
Equation 5, one obtains an expression for the wind velocity �� on the actuator disk: 

�� = �� + ��2 . (6) 

The induction factor � is introduced as: 

� = �� − ���� . (7) 

Using this new parameter, �� and �� are written as a function of ��: 

� �� = ���1 − �	�� = ���1 − 2�	. (8) 

Power (� = ��� ) and thrust on the rotor disk can now be written as: 

� � = 12 ����� 4��1 − �	� = 12 ����� 4��1 − �	�. (9) 

The power and thrust coefficients, �� and �� , are defined as the ratio between the 

power (or thrust) recovered by the rotor and the maximum power (or thrust) that is 
available in the wind: 
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� !
 " �� = Thrust	forceDynamic	force = �12����� = 4��1 − �	�� = Rotor	powerPower	in	the	wind = �12����� = 4��1 − �	�. (10) 

The variation of power and thrust coefficients with the induction factor is shown in 
Figure 3. One can see that the rotor can recover all the available force of the wind 
(�� = 1) but not all the power available of the wind (�� ≈ 0.6). 
 

 

Figure 3: Variation of ;< and ;=	with induction factor 

 

1.2.2 Wake rotation 

When the wind blows through the rotor, a rotation is observed as shown in Figure 4. 
Energy involved in this phenomenon is not taken into account with one-dimensional 
momentum theory. To improve the accuracy of performances predictions, one-
dimensional momentum was supplemented by the angular momentum. The goal is to 
use the same logic as for the one-dimensional momentum theory but with angular 
momentum. Figure 5 shows the trajectory of an air particle through a wind turbine 
rotor. Thus, one finds that the rotational velocity of the particle is zero upstream of the 
rotor. The particle is rotated only at the rotor. 
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Figure 4: Wake rotation                            Figure 5: Trajectory of an air particle 
passing through the rotor disc [4] 

 

Using the same notation as above, one can write the thrust force applied on a surface 
element d� due to angular momentum as: 

d� = ���� − ���	d� = >� >Ω + 12@A@B�A 2CBdB, (11) 

where Ω and @ are, respectively, the rotation speed of the rotor and the rotation speed 

of the wind. 

To simplify the relationship, the angular induction factor �’ is introduced: 

�E = @2Ω. (12) 

The thrust force applied on a surface element can be rewritten as: 

d� = 4�E�1 + �E	 12 �Ω�B�	2CBdB. (13) 

Equating the two relations for the thrust force, one arrives at: ��1 − �	�′�1 + �E	 = Ω�B���� = GH�, (14) 

where GH is the local tip speed ratio. 

 

1.2.3 Torque 

We now consider the torque recovered by the rotor. This torque is equal to the angular 
momentum multiplied by the radius: 

dI = d��@B	�B	 = ����2CB	dB	�@B	�B	. (15) 

Using the same notations, one obtains: 

dI = 4�E�1 − �	 12 ���Ω	B�2CB	dB. (16) 
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1.2.4 Conclusion 

Finally, the momentum theory (one-dimensional and angular) leads to two relations. 
One for thrust force: 

d� = 4��1 − �	�C��� 	BdB, (17) 

and one for torque: 

dI = 4�E�1 − �	�C��Ω	B�dB. (18) 

1.3 Blade element theory 

The momentum theory allows to calculate the thrust and the torque applied on the 
rotor disk as a function of the induction factor. The blade element theory allows to 
calculate the same loads (thrust and torque) recovered by a rotor composed of J 
blades. Figure 6 shows the distribution of the rotor elements. 

 

Figure 6: Scheme of a wind turbine annular element (right), velocity 
perceived by a blade element (top left) and forces acting on a blade element 
(bottom left) 

 

Each element has a blade chord, K, and an element length, dB. This element “sees” a 
relative velocity, L, composed of the velocity due to rotation, ΩB�1	 + 	�	, and the 
velocity due to the wind velocity, ��	�1	 − 	�	. M, N and O are respectively the attack 

angle, the twist angle and the angle between the relative velocity and the rotation plane 
of the element. 

Finally, a lift force, a drag force and a moment are applied to the blade element in its 
base. Lift and drag forces lead to the normal and tangential forces to the rotation plane. 
These lift and drag forces are essentially function of the relative velocity (magnitude 
and direction). The twist angle is a geometrical constant, so that M and O are related. O 
can be determined by: 

tan O = ���1 − �	ΩB�1 + �E	 = 1GH 1 − �1 + �′. (19) 

Then, one can calculate the attack angle M: 
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M = 	O − N. (20) 

The blades are determined by their profile shapes, or airfoils, defined by polar curves 
representing the lift and drag coefficients (Figure 7). For wind turbines, these curves 
are function of the attack angle and ideally the Reynolds number (PQ	 = 	��K/S). 
 

 

Figure 7: Variation of ;T, ;U and ;V with angle of 

attack (full range) for a NACA64-A17 airfoil 

 

The relative velocity magnitude is obtained with: 

L = ���1 − �	sin O . (21) 

The lift (�W) and drag (�X) coefficients, and relative velocity magnitude allow to calculate 
the lift force, dYZ, and the drag force, dY�: 

dYZ = �W 12 �L�KdB (22) 

dY� = �X 12 �L�KdB. (23) 

These forces allow to obtain normal and tangential forces at the rotation plane: 

dY[\W]X^ = dYZ cos O + dY� sinO (24) 

dY�\W]X^ = dYZ sin O − dY� cos O. (25) 

  

1.4 BEM: combination of momentum and blade element 
theory 

The two previous methods have identified expressions for the thrust force and the 
torque. The one-dimensional momentum and wake rotation theories lead to: 

d� = 4��1 − �	�C���	BdB (26) dI = 4�E�1 − �	�C��Ω	B�dB, (27) 

and the blade element theory leads to: 
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_Y[ = J. _Y[\W]X^ = J 12�L��CW cos O + �X sinO	KdB (28) 

_I = J. B. _Y�\W]X^ = J 12�L���W sinO − �X cos O	KBdB. (29) 

Using the local solidity, a′: 
aE = JK2CB, (30) 

the blade element theory leads to: 

_Y[ = aEC�L��CW cos O + �X sin O	BdB (31) 

_I = aEC� >���1 − �	sinO A� ��W sinO − �X cos O	B�dB. (32) 

There are two unknowns in these equations: the induction factor, �, and the relative 

speed, L. But the relative speed is a function of the induction factor. To solve these 

equations, thrust forces are equalized. One obtains: 

d� = _Y[ ⇔ ��1 − �	 = aEL���� �CW cos O + �X sin O	 (33) 

⇔ � = 0.5d1 − e1 − aEL���� �CW cos O + �X sinO	f. 
(34) 

However, it should be noted that if � changes then the relative velocity magnitude and 

its orientation also change. If the relative velocity changes, thus lift and drag 
coefficients also change. Calculation of the induction factor is done iteratively until a 
converged solution is obtained. 

Similarly, one can equalize torque relationships to determine �’: 
dIgh = _Ii ⇔ �E = aE�1 − �	��W sinO − �X cos O	GH4 sin� O . (35) 

1.5 Turbulent wake state and yawed actuator disk 

1.5.1 Turbulent wake state 

When the induction factor increases, there is a significant gap between the measured 
thrust force and the one predicted by BEM as shown in Figure 8. To take into account 
this phenomenon, empirical laws have been proposed. The principle is the use of an 
empirical law to calculate the induction factor. 

One can use a Glauert-modified relationship [5]: 

� = 18 × lmnn − 20 − 3p���50 − 36 × lmnn	 + 12 × lmnn�3 × lmnn − 4	36 × lmnn − 50 , (36) 

where lmnn is the hub and/or tip loss and  

�� = 89 + >4 × lmnn − 409 A � + >509 − 4 × lmnnA ��. (37) 

This law is only used if the thrust coefficient �� is higher than 0.96 × lmnn.  
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Figure 8: Comparison between thrust coefficients 
measured and predicted by BEM (Trss = t) 

1.5.2 Wind and wind turbine misalignement 

However, relation (37), that is commonly used, is not valid for the case of a yawed 
rotor. Relation (10), initial relation without turbulent wake state, is neither valid in this 
case. According to Madsen et al. [6], the relation derived by Stepniewski & Keys should 
be used for low values of the induction factor � (� < N	 with N ≈ 0.35 and v the rotor 
misalignment angle: 

�� = lmnn × 4�p1 + �� − � × 2 cos�v	. (38) 

 

At high loadings (� > N	, the correction derived by Ning et al. [7] is used, with ��,i the 

thrust coefficient given by relation (37) : ��lmnn = xy + xz� + x���,  

{y = ��,i		|}~ℎ	� = N  

{′y = _��,i	_� 	|}~ℎ	� = N  

{z = ��z cos�v	��� (39) 

x� = {z − {y − {yE�1 − N	�1 − N	�   

xz = {yE − 2x�N  

xy = {z − xz − x�  

The two constant parameters take the default values ��z = 2 and ��z = 0. 
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1.5.3 Axial induction 

Since in our implementation we need to get the axial induction factor knowing the 
thrust coefficient (see section (1.4)), the above expressions need to be inverted. Rather 
than using costly root-finding methods directly in the code, equation (39) has been first 
inversed using a Brent algorithm, and the results have been fitted using high order 
coefficients, given in appendix. This polynomial approximation is valid for thrust 
coefficients below �� = 1.75. For higher thrust coefficients, the model automatically 

switches to a root-finding algorithm to determine the axial induction factor from the 
thrust coefficient. 

1.6 Blade Element Momentum ad (BEAMad) 

In this model, the equations are the same as for the BEM model. The only difference is 
the treatment of the velocity normal to the rotor. In BEM, the induction factor is applied 
to all velocities normal to the rotor. In BEMad, the induction factor is applied only to 
wind velocity normal to the rotor (see section 1.3). Thus, the induction factor is not 
applied for the velocity induced by the translation of the blade. It first intended to filter 
out the blade vibration velocities, which can be large, but this theory applies as well to 
floater motions while considering floating wind turbines. With this model, the relative 
wind created by these movements is not weighted by the induction factor. It would be 
preferable to replace this procedure by a low pass filter on all the velocities normal to 
the rotor. 

 

1.7 Cutoffs 

Under certain conditions, it might be useful to define reference tip speed ratio (��P) 

values, ��P������, below and above which the induction factors computed by the BEM 

theory are set to zero. In AeroDeeP, the user can give these ��P������ values as an 

input. In order to avoid non-smooth variations in aerodynamic loadings, which could 
have a negative impact on the aero-elastic coupling, a smoothing function is used to 
generate a transition between the cutoff regions and the BEM region, in the range of ��P������ − 0.5	 < 	��P	 < 	��P������, or 0	 < 	��P	 < 	��P������ in case ��P������ < 0.5. This 

transition is performed using a linear interpolation between the induction factors 
computed with the BEM model and their values below the cutoff. 
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2 Secondary effects 

The models presented above are used to estimate the energy converted by a system 
under optimal production conditions. In order to approach reality, additional corrections 
can be used. 

2.1 Tip and hub loss 

In BEM, it is assumed that blade element behavior is the same for an element in the 
center of the blade as for an element at the tip or at the root of the blade. But, in 
reality, losses are observed at the tip of the blade and at the root due to the hub. To 
take into account this phenomenon, Prandtl [8] proposes to add a parameter Y in the 
momentum equations. Therefore, thrust and torque equations become: 

d� = Y4��1 − �	�C���BdB (40) 

dI = Y4�E�1 − �	�C��ΩB�dB. (41) 

Y is the product of two functions representing respectively losses at beginning and at 
the end of the blade: 

F = 2π cos�z�
��exp�−J2 �1 − BPgW]X^�BPgW]X^ sinO �

�
��× 2π cos�z�

��exp�−J2 � BP��\ − 1�BP��\ sinO �
�
�� , (42) 

 

 

where P��\, PgW]X^ and B are respectively the hub radius, the blade radius (ie. hub radius 
plus blade length) and the element radius (element position on rotor disk). 

Figure 9 shows the distribution of the loss coefficient along the blade. 

 

Figure 9: Loss coefficient as a function of the 
position on the blade (� = �°) 

Tip loss Hub loss 
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2.2 Tower effect 

For horizontal axis wind turbines (HAWTs), as well as for vertical axis wind turbines 
(VAWTs), the tower may have an impact on the flow seen by the rotor. For HAWTs, the 
tower may have an impact upstream and downstream of itself. Upstream, the flow 
bypasses the tower, so there is an area where the flow is accelerated and another area 
where the flow is slowed. For upwind turbine, if the blade passes close enough to the 
tower, it can meet this area where the flow is disturbed by the tower [9]. For downwind 
wind turbines, the blades passes behind the tower and then passes into the tower 
wake. This phenomenon is known as “tower shadow” (Figure 10). Flow around a 
cylinder is a well-known subject. Many laws exist to calculate the flow behind a cylinder. 
Generally, these laws depend on the Reynolds number. In the case of wind turbines, it 
is assumed that the Reynolds number is large and the nature of the flow no longer PQ-
dependent. 

 

 

Figure 10: Tower shadow effect on the power during a full 
rotation of one-blade downwind and upwind the rotor 

 

When the tower does not have a rotation speed (i.e. for HAWTs), this influence on the 
blade aerodynamics is modeled as in AeroDyn [3]. The tower’s influence on the nearby 
dimensionless velocity field is based on: 

�W��]W = �1 + ��	�� (43) 

�W��]W = ���	��,  

�1 + ��	 and �� being the total dimensionless velocity deficit in the wake direction and 

perpendicular to the wake direction respectively. In order to compute those deficits, 
one computes separately the upstream deficit, due to potential effects, and the 
downstream deficit, due to the wake. 

The upwind part is modeled as: 

�� = −P���^H� � � − ¡�	� � + ¡�	� + �X2C P���^H  � + ¡� (44) 
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�� = −2 P���^H�  ¡� � + ¡�	� + �X2C P���^H¡ � + ¡� ,  

P���^H being the tower radius at the considered elevation. The downwind part is modeled 

as: 

��X = − �X√_ cos� £C2 ¡P���^H√_	¤ 	if	|¡| ≤ √_�X = 0																																															if	|¡| > √_ (45) 

where _ is: 

_ = p � + ¡�. (46) 

The distance can be altered to integrate the correction of Bak et al. :    =   + §��HHP���^H, 
with §��HH = 0.1 leading to the full potential flow solution. 

Before merging the two models and in order to have a smooth transition between the 
upwind and downwind velocities above the tower, a vertical blending is applied for both 
upwind and downwind velocity deficits in the wake direction, as defined in [10]: 

��,X\W^¨X = {© × ��,X = �!
" ��,X																											if	ℎ���^H��,X × 12 >cos >C�ª − ℎ���^Hl\W^¨X A + 1A 													if	ℎ���^H < ª ≤ ℎ���^H + l\W^¨X ,0																																																								if	ª > ℎ���^H + l\W^¨X  (47) 

l\W^¨X being defined as the tower top diameter. 

Then, another blending function is applied to merge the upwind and downwind model in 
the x − y plane. The blending function writes: 

{] = 12 >cos > C B���^HA + 1A (48) 

and finally, one gets: 

�� = « ��\W^¨X 																																if	  ≤ 0{]��\W^¨X + �1 − {]	�X\W^¨X 													if	0 <   ≤ B���^H�X\W^¨X 																																									if	  > B���^H  (49) 

�� = ¬ ��																																						if	  ≤ 0{]��																			if	0 <   ≤ B���^H						0																																							if	  > B���^H . (50) 

The effect of the vertical smoothing clearly appears on Figures 10 and 11. The 
transition between the zone of influence of the tower and the free stream is smooth and 
continuous. 

The tower shadow model that includes the blending functions is referenced as the 
“IFPEN” model in the input file, while the standard tower shadow model is the default 
one (“Activated”). 
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Figure 11: Velocity contours computed by the tower shadow model (;U = 	. ®¯) 
around a °±r²³° = ´m-tower, xy plane 

 

2.3 Skewed Wake Correction 

Skewed wake behind the rotor appears when wind turbines operate at an angle to the 
wind. However, BEM does not take into account this phenomenon. Several corrections 
have been introduced in order to improve results.  

2.3.1 Glauert model 

A first model is based on the work of Glauert [11] (see also [12]). The induction factors 
are modified as follows: 

� = �y >1 + 15C32 BP tan µ2 cos�¶ − ¶z	A, (51) 

with �y the original (uncorrected) induction factor. This correction depends on the radius P, the azimuth angle ¶ and the wake skew angle µ. This skew angle is calculated using 

the following formula: µ = v�0.6�� + 1	, with �� the rotor averaged induction factor and v 
the misalignment angle (i.e. the relative angle between the rotor plane and the 
incoming wind vector). ¶z is a phase angle. 

2.3.2 IFPEN model 

Another model developed by Blondel et al. [13] is also available. This model accounts 
for the presence of the root vortices (i.e. vortices that emanate from the root of the 
blade, that interact with the rotor plane). It can be viewed as a tradeoff between the 
Schepers model [14], that is based on a lot of constant parameters, and the simplistic 
Glauert model, that only accounts for the tip vortex. Using this model, the axial 
induction factor reads: 

� = �y �1 + xz BP tan µ2 sin�¶ − ¶z	 + x� �1 − BP� tan µ2 sin	�¶ − ¶�	�. (52) 

xz, x� are the so-called “shape functions” and ¶z = 0°, ¶� = 180°, the phase angles. The 
shape functions take the following form (with �z = 0.35 a constant parameter, and B·�\  

the hub radius): 

xz = �1 − �z	 + �z B − B·�\P − B·�\ , (53) 

x� = 1 − �z B − B·�\P − B·�\ . (54) 
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2.4 Dynamic stall 

One can talk about stall when the boundary layer flow around a blade is detached. This 
causes a significant increase in drag. In static cases, this phenomenon depends on the 
attack angle of the flow with the airfoil. For dynamic cases, when the attack angle is 
function of time, stall appears for different attack angles than static cases. 

This phenomenon is directly visible in Figure 12 where the lift coefficient versus the 
attack (”incidence”) angle is presented. The dotted curve represents the dynamic 
behavior and the solid curve represents the static behavior. 

 

Figure 12: Lift coefficient ;T of a pitching airfoil: 

with and without dynamic stall 

 

Note that the dynamic behavior introduces a hysteresis between detachment and 
reattachment of the boundary layer. Dynamic stall is a current subject of aeronautic 
research and several models exist. These models generally require parameters obtained 
through wind tunnel tests. Some models operate without these requirements such as 
the Boeing-Vertol model [15]. But they are less accurate. When using a dynamic stall 
model for coupled aero-elastic simulations, one should take care of the considered 
simulation time steps and the coupling with other phenomena, such as the tower 
shadow, which can cause fast and strong attack angle variations. Using a too large time 
step could thus lead to the instability of the models. As a recommendation, one should 
consider a time step small enough to have several points to discretize the blade 
passage in front of the tower. 

2.4.1 Øye model 

A first approach for modelling the dynamic stall phenomena is the one of Øye (see 
[16]), who suggested - if the angle of attack is below the full stall value - to simulate 
the stall phenomenon using a single ordinary differential equation representing the time 
lag of the separation point displacement. Øye defines a dynamic ({X) and a static ({) 
attachment degree function, representing the position of the separation point on the 
suction side of the airfoil. The relation between the static and the dynamic functions 
simply writes: 
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_{X_~ = { − {X¸ ,	 (55) 

¸ being a time constant defined by Øye as ¸	 = 	�z	K/�, �z being a constant usually set to 4 by default, K the airfoil chord, and � the norm of the airfoil relative velocity. Once the 

static attachment function is determined, Equation 60 can be numerically integrated. To 
do so, one first needs to define the lift coefficient under fully attached (�W,�]) and fully 

separated (�W,�¹) flow conditions. The actual lift coefficient, �W, given by the airfoil polar, 

is nothing but a ponderation of those two coefficients and the attachment degree 
function. Thus, the function { can be found inverting the following relation: 

�W = {�W,�] + �1 − {	�W,�¹.	 (56) 

The definition of the lift under fully attached flow conditions, �W,�], is based on the lift 

curve slope around My: 
�W,�] = º�WºM »¼½ �M − My	,	 (57) 

My being the angle of attack where the lift value is zero. 

The determination of the fully separated lift coefficient, �W,�¹, is a bit more tricky. In the 

current AeroDeeP implementation, we use a rather common approach (see [15], [17]), 
already introduced in [13], based on the Kirchhoff flow theory (Equation (58)) to 
determine a first attachment degree function value: 

�W ≃ £1 + p{2 ¤� �W,�].	 (58) 

Equation (58) is inverted, taking care of possible singularities, and then the value of { is 

used to determine the fully separated lift coefficient based on Equation (56). Finally, the 
dynamic lift coefficient computed using Equation (59), which is nothing but Equation 
(56) based on the dynamic attachment degree function: �W,X�¨ = {X�W,�]�M	 + �1 − {X	�W,�¹�M	.	 (59) 

As shown in Equation (59), the Øye model only describes the dynamic lift evolution. 
Dynamic drag and moment coefficients are thus considered to be equal to their static 
counterparts. 

2.4.2 Risø model 

Another approach for simulating the dynamic stall phenomena has been proposed by 
Hansen et al. [17], and is based on a modified version of the Leishman-Beddoes model 
[18], which provides formulation for both the dynamic lift, drag, and moment 
coefficients. The most important assumptions in the model regarding the original 
Leishman-Beddoes formulation are the incompressible flow assumption effects (Mach 
number below 0.3) and the absence of leading edge separation (i.e. thick airfoil 
assumption). Only a very brief summary of the lift model will be given here. For a more 
complete description, the reader is referred to the original articles [18], [17]. The basic 
idea of the model is quite similar to the Øye model. An unsteady lift coefficient under 
attached flow conditions (�W,�]) and an unsteady lift coefficient under fully separated 

flow conditions (�W,�¹) are computed, based on an effective angle of attack. This effective 

angle of attack aims at taking into account the downwash (change in flow direction) due 
to the presence of the near wake behind the airfoil. For the attached flow conditions 
and under the assumption of small amplitude motions of the airfoil, the Theodorsen 
theory is used to represent the effect of vortex shedding due to the wake, and leads to 
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the definition of two state variables,  z and  �, representing the downwash times the 
relative velocity, which have to be solved for: 

 ¿À + 2�K £§À + K�¿2��¤  À = §À�À 2�K M,	 (60) 

 ¿À representing the time derivative of the scalar  À, with }	 = 	1, 2. Using those two state 

variables, the effective angle of attack can be computed: 

M^ = M�1 − �z − ��	 +  z�~	 +  ��~	.	 (61) 

Then, the unsteady lift under attached flow conditions writes: 

�W,�] = º�WºM »¼½ �M^ − My	 + CK M2�¿ .	 (62) 

For the lift under fully separated flow conditions (�W,�¹), the approach is identical to the 

one introduced in 2.4.1, based on Kirchhoff flow model, and thus will not be recalled 
here. Contrary to the Øye model, additional ODEs (ordinary differential equation) will 
now be introduced to model the dynamic trailing-edge separation. First, a time-lag 
between the lift and the airfoil pressure distribution is supposed, and is represented by 
a first order filter on the fully attached lift coefficient ( ��~	 = �′W,�]):  ¿� + ���z � = ���z�W,�] ,	 (63) 

leading to the definition of a new angle of attack: 

M� = �EW,�]/ £º�WºM »¼½¤ + My, (64) 

and thus to a new attachment degree function, {′, based on this new angle of attack, 

still computed using the approach introduced in 2.4.1. Then, an additional ODE arises 
due to the time-lag of the separation point position. Again, a first order filter is used to 
introduce an unsteady attachment degree function ( Á = 	{"):  ¿Á + ���z Á = ���z{E�~	.	 (65) 

Finally, the dynamic lift coefficient is computed: 

�W,X�¨ = º�WºM »¼½ �M^ − My	{" + �W,�¹�M^	�1 − {"	 + 	CK M2�¿ .	 (66) 

Additionally to the lift model, a drag model and a moment model are proposed in [17], 
but will not be recalled here for the sake of brevity. 

Finally, the Risø model for the lift coefficient can be written as a set of four ODEs: 

 ¿z + 2�K £§z + K�¿2��¤  z = §z�z 2�K M 
 ¿� + 2�K £§� + K�¿2��¤  � = §��� 2�K M  ¿� + ���z � = ���z�W,�]  ¿Á + ���z Á = ���z{′�~	 

(67) 

�� and �� both represent time scales, and might be fitted on experiments. 

Recommended values are given in Table 1. Additional curve fitting constants �z, ��, §z 
and §� also have to be determined. Typical values are given in [17] (see also Table 1). 
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�� �� �z �� §z §� 1.7 6.0 0.165 0.335 0.0455 0.3000 
Table 1: Recommended values for the Risø dynamic stall model constants 

 

Direct integration of Equation 72 might lead to an unstable solution and high 
computational costs. Thus, as suggested in [17], an high order indicial formulation was 
preferred in the current AeroDeeP implementation. 

2.4.3 Boeing-Vertol model (deprecated) 

The Boeing-Vertol model [15] assumes a relationship between the static and dynamic 
stall angle to determine a dynamic angle of attack MX in the entire range of M. The 
relationship is given as: 

MX − M = �zeK|M¿ |2� M|M¿ | ,¿ 		 (68) 

where �z = 0.87 in [11]. Now �W,X is determined as: 

�W,X = �W�0	 + �W�MX	 − �W�0	MX M.			 (69) 

The theory of the model is illustrated in Figure 13, where the static and dynamic lift 
curves are plotted as dashed and bold full lines, respectively. Consider an angle of 
attack Mz in the linear domain during increasing M, hence M	 > 	0. Using above 
equation ̇gives a related dynamic angle of attack MXz which is less than Mz. Now, KW�MXz	 
is indicated by circles, the slope of the line going from KW�MX	 is evaluated, giving the 
fraction in the above equation. Finally, KW,X illustrated by circles is determined from the 

above equation. In the linear domain, the slope determined at MX is equal to the slope 

of the static lift, thus, no distinction can be made between the static and dynamic lift 
curve. Now, consider an angle of attack M� in the stall regime. Again, the corresponding 
dynamic angle of attack MX� is found from the above equation. Then, the slope 

determined at MX is less than that of the fully attached region, making KW,X�M�	 less than 

that of a linear growing lift. This creates a dynamic stall cyclic behavior as indicated in 
Figure 13. For M = 0, it is easily seen that the combination of equations above generates 
the static lift, i.e. the dynamic curve crosses the static curve for M = 0. 
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Figure 13: Illustration of the Boeing-Vertol model. −−, Static 
lift. −, Dynamic lift. X, Quasi-static angle of attack.  ̊, Dynamic 

angle of attack, from [15] 

 

2.4.4 Airfoil tables interpolation 

AeroDeeP is able to handle the Reynolds dependency for the input tables. Cubic spline 
interpolations are performed between the angles of attack, and then linear interpolation 
are performed between the Reynolds numbers. 

2.5 Stall delay (3D effects) 

The accuracy of Blade Element Momentum methods is very sensitive to the input airfoils 
data (lift, drag and moment coefficients as function of the angle of attack). When 
available, those data come from experimental measurements. However, those 
measurements are performed in non-rotating conditions with two-dimensional airfoils 
(or blades with constant shape airfoils). Using those data for wind turbines calculations 
may result in inaccuracies: rotational and three-dimensional effects have to be taken 
into account. To achieve this, several models have been proposed in the literature. 
Figure 14 shows the effect of such models on a rotating turbine blade (experimental 
data extracted from [19]). 
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Figure 14: Influence of three dimensional effects 
and rotation on ;T 

 

2.5.1 Snel model 

Based on experimental measurements, the model of Snel (originally presented in [12]) 
including local speed ratio dependency (see [19] for a review) corrects the lift 
coefficient for those effects: 

�W,�X = �W,�X + xÃ¨^W G¹1.0 + G¹ �KB�� Ä�W,��� − �W,�XÅ			 (70) 

�W,��� = º�WºM »¼½ sin�M − My	.			 (71) 

The constant of the model is, by default: xÃ¨^W = 3.1.  

2.5.2 Dumitrescu model 

Alternatively, the model of Dumitrescu et al. [20] can be used. This model has a 
stronger impact on the lift coefficient, and a good agreement with experimental 
measurements has been obtained in previous studies [21]. 

KW,�� = KW,�� + Æ1 − Q � d− vBK − 1fÇ ∆KW,z ∆KW,z = 2C sin�Mz − My	 − KW,���M				 
(72) 

Based on Dumitrescu et al. suggestion, we will use the following constant parameter: γ = 1.25. Furthermore, a limiter is applied in equation (72) in order to avoid the 
divergence of the solution: 



AeroDeeP Theory Guide 
_______________________________________________________________________________________ 

- 21 - 

KW,�� = KW,�� + Æ1 − Q � d− vmax �1 × 10�Ê, BK − 1�fÇ ∆KW,z	 (73) 

 

2.5.3 Additional Lindenburg tip correction 

Lindenburg [22] suggested an additional correction that diminishes the lift coefficient 
near the tip of the blade. This correction should be applied outboard, above a relative 
radius of 0.8. This model is justified by the impact of the radial flow, present at mid-
span due to the rotational effects. This radial flow tends, according to Lindenburg, to 
reduce the negative pressure on the suction side of the airfoils, compared to the non-
rotating case. Based on the UAE Phase VI experimental data, Lindenburg derived the 
following empirical law: 

KW,��,�À� = KW,�� − > ΩB�H^WA . Q��ËÌÍÎÏ . �KW,��� − KW,��	 KW,��KW,��� 	 (74) 

 

In practice, a constant “outboard aspect ratio” �P��� = 2.0 has been used in our 
implementation. 

 

2.6 Dynamic Inflow 

In the classical formulation of the Blade Element Momentum theory, an instantaneous 
equilibrium is supposed between the wind turbine and its wake. However, when a 
change occurs in the turbine operating conditions (i.e. a variation in wind speed or 
operating angle), a lag is observed before a new equilibrium state is reached. This lag is 
due to the viscous nature of the wind turbine wake, and can be modeled using an 
appropriate model. 

In AeroDeeP , the choice has been made to use the two-differential equation model of 
Øye, where L represents the induced velocities, �	 × 	� : 

LÀ¨� + ¸z _LÀ¨�_~ = LÐ¹ + x¸z _LÐ¹_~ 			 (75) 

LX�¨ + ¸� _LX�¨_~ = LÀ¨� 			 (76) 

¸z = xzÑz1 − x�Ñz� P�y				 (77) 

¸� = >xzÑ� − x�Ñ� �BP��A ¸z.			 (78) 

The time constants, ¸z	and ¸�, have been determined from potential flow calculations. 

The resolution method suggested by Hansen [23] has been used: 

Ò = LÐ¹ + x¸zLÐ¹À −LÐ¹À�zΔ~ 				 (79) 

LÀ¨�À = Ò + ÄLÀ¨�À�z − ÒÅQ�Ô�/ÑÕ 			 (80) 

LX�¨À = LÀ¨�À + ÄLX�¨À�z −LÀ¨�À ÅQ�Ô�/Ñ� .			 (81) 
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The model constants take the following default value: xzÑz = 1.1,  x�Ñz = 1.3, xzÑ� = 0.39, x�Ñ� = 0.26, x = 0.6. 

The effect of the model is represented on Figure 15. An instantaneous pitch step is 
applied on the turbine blades at time ~	 = 	5 s. A damping appears with the dynamic 
inflow model, between ~	 = 	5 s and ~	 = 	10 s. The turbine reaches a new equilibrium 
state at time ~	 = 	10 s. 

 

Figure 15: Dynamic inflow effect on rotor torque 
during a pitching step 

 

In AeroDeeP, the induction factor � that is considered in the dynamic inflow model is 

not corrected for the “Skewed-wake” effect (see Section 2.3). However, it includes the 
advancing/retreating velocity effects due to the relative motion of the blade in case of 
rotor misalignment (i.e. misalignment with respect to the incoming wind). Thus, � 
cannot be considered as a purely “axial” induction factor, since it integrates some 
effects due the rotor plane misalignment.  

 

3 Reference frames and relative velocities 

The reference frames relative to the blade element and the hub used in AeroDeeP are 
depicted on Figure 16. These reference frames are directly provided by 
DeepLinesWindTM. 

 



AeroDeeP Theory Guide 
_______________________________________________________________________________________ 

- 23 - 

Figure 16: Reference frames used for the calculation of the relative 
velocities, view from top 

 

The position, orientation, and velocity matrices of the elements and components are 
defined in the global frame of reference. Then, we use matrix transformations to be 
able to write a given vector in a specific coordinate system to another reference 
system. As an example, if one needs to express the vector coordinates of element 
relative velocities belonging to the element reference frame into the hub reference 
frame, two matrix vector products have to be performed: 

�ÖÖ×H^W]�À©^,ØW�\]W = Ù^W�→ØW�\]W 	�ÖÖ×H^W]�À©^,^W^Û^¨� (82) 

�ÖÖ×H^W]�À©^,·�\ = ÙØW�\]W→·�\	�ÖÖ×H^W]�À©^,ØW�\]W . (83) 

The matrix used to transform from the element system to the global system, Ù^W�→ØW�\]W, 
is simply the transpose of the matrix to transform from the global system to the 
element system. 

Using the reference frames and relative velocities projections defined in Figure 16, the 
attack angle simply become: 

M = atan £�Ü,^W���,^W�¤, (84) 

the relative velocity simply being the difference between the wind velocity and the 
element velocity, altered by the induction factors. 

In AeroDeeP, three BEM models have been implemented (see [24]): 

• BladeElementMomentum 

• BEMad 

 

These two models differ in the way the relative velocities are computed. In the first 
model, the global element velocity is taken into account during the iterative procedure. 
In the second, the element structural velocity is excluded. In mathematical form, the 
first model writes, in the hub reference frame: 

«�H^W,Ü = �1 + �E	��À¨X,Ü − �1 + �E	�^W^Û^¨�,Ü�H^W,� = �1 + �E	��À¨X,� − �1 + �E	�^W^Û^¨�,��H^W,Ý = �1 − �	��À¨X,Ý − �1 − �	�^W^Û^¨�,Ý  (85) 

whereas the second writes: 

«�H^W,Ü = �1 + �E	��À¨X,Ü − �1 + �E	�^W^Û^¨�,Ü�H^W,� = �1 + �E	��À¨X,� − �1 + �E	�^W^Û^¨�,��H^W,Ý = �1 − �	��À¨X,Ý −																	�^W^Û^¨�,Ý  (86) 

Both models use the transformation matrices as defined above. Those two models have 
been implemented to give some freedom to the user, but we recommend the use of the 
first one, namely “BladeElementMomentum”.  
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4 Global iterative procedure 

In order to compute the forces and torques at any blade element, the following 
algorithm is applied: 

Algorithm 1: Global BEM algorithm in AeroDeeP 

Data: Position, orientation, and velocities of the blade element and turbine 
components. 

Wind velocity in the global frame of reference. 

Airfoils properties. 

Values of induction factors (static and dynamic) from the last iteration. 

Angles of attack from the last iteration. 

Result: induction factors and inflow angle 

initialization with values from the last iteration; 

correct the wind velocity with the tower shadow model (§2.2); 

while (∆M and ∆O	 > 	~ml) do 

calculate the current element relative velocity; 

evaluate the current angle of attack α based on the relative velocity vector; 

evaluate the inflow angle O based on the relative velocity vector in the hub 

reference frame ; 

determine the Reynolds number and look for corresponding lift, drag and 
moment coefficients in the airfoils tables; 

eventually, correct the computed coefficients for three dimensional/rotation 
effects (§2.5) and/or dynamic stall (§2.4); 

compute the tip and hub loss factors (§2.1) and determine the thrust 
coefficient CT (§1.5); 

                compute induction factor � using the polynomial fit (88); 

compute the tangential induction factor �′ (35); 

relax the new value of the induction factor for the next iteration; 

end 

correct the induction factor for dynamic inflow (§2.6); 

correct the induction factor for skewed wake �¹Þ^� (§2.3); 

correct the induction factor for dynamic stall (§2.4) and/or three 
dimensional/rotation effects (§2.5); 

 

 

As shown in Algorithm 1, the root finding algorithm is based on a simple-fixed point 
algorithm, that uses a relaxation factor to prevent from divergence. After each 
iteration, the new value of the induction factor is relaxed using: 

�¨^� = ��WX + 0.5 × ��¨^� − ��WX	 (87) 
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where �¨^� is the value of the last computed induction factor (the relaxation is not 

applied on the tangential induction factor).  

 

5 Recommended options 

The sample XML file below recapitulates the recommended values for the models 
described above. 

 

<?xml version="1.0" encoding="utf-8"?> 

 

<AERODEEP DTDRevision="v1.1" 

          xsi:noNamespaceSchemaLocation="aerodeep_v21.xsd" 

          xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

 

  <MODEL name="BladeElementMomentum" min_tsr="1." max_tsr="30."/> 

 

  <SECONDARY_EFFECT  

                    tipLoss         = "Prandtl" 

                    hubLoss         = "Prandtl" 

                    tower_shadow    = "Activated" 

                    stall_model     = "Oye" 

                    skewed_model    = "IFPEN" 

                    dynamic_inflow  = "Activated" 

                    threeD_effects  = "None" /> 

 

 

 

  <FLUID density="1.225" viscosity="1.81206e-5"/> 

 

</AERODEEP> 
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6 Appendix A: polynomial fit for the induction factor in yaw 

xy = −0.03650954963023791	 ∗ γ� − 0.010406485510328307	 ∗ γ� 	+ 		0.187634868194944400	 ∗ γ	 − 0.10198290016206948  

xz = +0.17341954565890796	 ∗ γ� 	+ 	−0.212320835590612500	 ∗ γ� 	+ 	−0.289705458143211100	 ∗ γ	 + 		0.23260734280797385  

x� = −0.14633132594729326	 ∗ γ� 	+ 		0.278786061555097550	 ∗ γ� 	− 0.077968315317758760	 ∗ γ + 		0.05781887310182215 (88) 

x� = +0.05080156142660903	 ∗ γ� − 0.138488946370084700	 ∗ γ� 	+ 		0.108708441059442810	 ∗ γ + 		0.20769821396129032  

xÁ = −0.003582100801873169 ∗ γ� 	+ 		0.011323623595503348	 ∗ γ� 	− 0.011479799674274819	 ∗ γ	 + 		0.0050536334424277915  

� = xy > ��lmnnAÁ + xz > ��lmnnA� + x� > ��lmnnA� + x� ��lmnn + xÁ  
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