Home > Theory > Stress Post- Processing > API Conventions for Tubular Joints
API conventions for tubular joints
Background
For a selected tubular joint between two beams, a plane is naturally defined by the axes of both beams.
The following reference frame is used to calculate the stresses in one of these beams:
-
\(Z\) axis is the brace axis
-
\(Y\) axis is the moment axis which bends the connection in the plane defined by the two beams;
-
\(X\) axis is the moment axis which bends the selected beam out of the connection plane
And the stresses write :
\(\small\sigma_{G1}(t)=SCF_{A_{C}}\cdot\sigma_{AZ}(t)+SCF_{M_{IP}}\cdot\sigma_{FY}(t)\)
\(\small\sigma_{G2}(t)=\frac{1}{2}(SCF_{A_{C}}+SCF_{A_{S}})\cdot\sigma_{AZ}(t)+\frac{\sqrt{2}}{2}\cdot SCF_{M_{IP}}\cdot\sigma_{FY}(t)-\frac{\sqrt{2}}{2}\cdot SCF_{M_{OP}}\cdot\sigma_{FX}(t)\)
\(\small\sigma_{G3}(t)=SCF_{A_{S}}\cdot\sigma_{AZ}(t)-SCF_{M_{OP}}\cdot\sigma_{FX}(t)\)
\(\small\sigma_{G4}(t)=\frac{1}{2}(SCF_{A_{C}}+SCF_{A_{S}})\cdot\sigma_{AZ}(t)-\frac{\sqrt{2}}{2}\cdot SCF_{M_{IP}}\cdot\sigma_{FY}(t)-\frac{\sqrt{2}}{2}\cdot SCF_{M_{OP}}\cdot\sigma_{FX}(t)\)
\(\small\sigma_{G5}(t)=SCF_{A_{C}}\cdot\sigma_{AZ}(t)-SCF_{M_{IP}}\cdot\sigma_{FY}(t)\)
\(\small\sigma_{G6}(t)=\frac{1}{2}(SCF_{A_{C}}+SCF_{A_{S}})\cdot\sigma_{AZ}(t)-\frac{\sqrt{2}}{2}\cdot SCF_{M_{IP}}\cdot\sigma_{FY}(t)+\frac{\sqrt{2}}{2}\cdot SCF_{M_{OP}}\cdot\sigma_{FX}(t)\)
\(\small\sigma_{G7}(t)=SCF_{A_{S}}\cdot\sigma_{AZ}(t)+SCF_{M_{OP}}\cdot\sigma_{FX}(t)\)
\(\small\sigma_{G8}(t)=\frac{1}{2}(SCF_{A_{C}}+SCF_{A_{S}})\cdot\sigma_{AZ}(t)+\frac{\sqrt{2}}{2}\cdot SCF_{M_{IP}}\cdot\sigma_{FY}(t)+\frac{\sqrt{2}}{2}\cdot SCF_{M_{OP}}\cdot\sigma_{FX}(t)\)
If we compare DeepLines conventions with API conventions for the 8 section points where streses are calculated, it comes :
As a consequence, the \(X\) and \(Y\) local axes correspond to the X and Y axes used for the API formula.
-
\(SCF_{IP}\) will be applied on the \(Y\) local direction and must be associated to the bending stiffness \(EI_{yy}\)
-
\(SCF_{OP}\) will be applied in the \(X\) local direction and is associated to the bending stiffness \(EI_{xx}\).
Fatigue and stress post-processing
A set of \(SCF\) coeffcients may be defined for a fatigue analysis depending on the type of line.
For tubular joints, four \(SCF\) may be entered: \(SCF_{A_{Saddle1}}\); \(SCF_{A_{Crown1}}\); \(SCF_{M_{IP}}\); \(SCF_{M_{OP1}}\) are the \(SCF\) coefficients.
For classical pipes, three \(SCF\) are usefull : \(SCF_{axial}\), \(SCF_{bending}\)
When these coefficients are defined, the stresses used for fatigue assessment writes: $$ \sigma_{axial}=SCF_{axial}\frac{N_{Sd}}{A_{steel}} \text{ and } \sigma_{bending}=SCF_{bendingX}M_1\cdot\frac{y}{I_x}-SCF_{bendingY}M_2\cdot\frac{x}{I_y} $$
Note
At the end of a fatigue analysis, in the summary file, the \(SCF\) coefficients actually applied are recalled.
Example:
Most Damageable Element in the range: \([0.833333m;16.618m]\) * Abscissa (m) : \(0.833333\) * Section Point : \(7\) * Damage : \(1.1773*10^{29}\) * Fatigue Life (years) : \(8.49398*10^{-30}\)
Stress \(SCF\) coefficients:
* \(SCF_{axial}= 1\)
* \(SCF_{bending}= 1\)
\([0, 17.368]\) * \(SCF_{A_{Saddle}}= 1\) * \(SCF_{A_{Crown}}=1\) * \(SCF_{M_{IP}}= 0.7458\) * \(SCF_{M_{OP}}= 1.4098\)