Processing math: 100%
Skip to content

Home > Theory > Lines Modelling > Bar Element

Bar element

The bar element only bears axial strains with a multi-linear axial stiffness. A point P of the structure in the global reference is located by its position on the mean line :

\overrightarrow {OP} = \vec {x_o}(s)

Then comes the axial strain, \varepsilon = \left \lVert\frac {\partial \vec {x_o}}{\partial s} \right \rVert -1, and the axial force, \vec N_x = EA \varepsilon \vec n , with \vec n = \frac {\vec {x_0}}{\lVert \vec{x_o} \rVert}.

Finally, the internal efforts contribution of a bar element is given by :

G_{internal}^{bar}(\vec x, \delta\vec{x}) = <\vec{N_x}.\delta\vec{x_o}>

Let A_{\rho} be the lineic mass diagonal matrix. Then the inertia contribution writes :

G_{internal}^{bar} = < A_{\rho} \ddot{\vec {x_o}}.\delta\vec{x_o}>