Home > List of Keywords > *WAVOPTIMER
*WAVOPTIMER
Data format:
A single line with at minimum to 9 values NWAGEN TETH NPEAK HSi TPi IRAND HMHS Tmin Tmax
Status : O
ptional (dynamics)
Purpose :
To define a TRIANGLE spectrum : Used to define more realistic West-African sea states : multi peak spectrum. The different peaks are fitted by a linear model.
Details :
Parameter | Description |
---|---|
NWAGEN | Number of sinusoidal wave components to be generated |
TETH | Direction of propagation (degrees from the positive X axis) |
NPEAK | Number of Peaks of the wave spectrum |
HSi | Significant height of peak i |
TPi | Peak period of peak i |
IRAND | Arbitrary positive integer odd number used to trigger the phase random series generation. Two runs using the same IRAND value will generate the same phase series. (Def =12345). A integer I5 is recommended. |
HMHS | Hmax/Hs ratio (Def = 1.7) If HMHS = 0, no maximum wave height is looked for. |
Tmin | Minimum period for the waves generation (Default = 0.4*Tp). |
Tmax | Maximum period for the waves generation (Default = 2*Tp). |
Example :
*WAVOPTIMER
200 0 2 1.25 9 0.8 5 12345 1.7 0 0
This defines an irregular wave having 200 individual components, heading towards the positive X-direction. The significant height of the first peak is 1.25 m and the peak period is 9 seconds. The significant height of the second peak is 0.8 m and the peak period is 5 seconds. We ask for the ratio of the maximum wave height to the significant height to be 1.7.
Note
1) A Triangle spectrum is given by :
Component | Spectral model |
---|---|
Swell peak | \(S(f) = 0.08474 \frac{H^2_5}{f_p}\Bigl(26.2 \frac{f}{f_p} - 22\Bigr)\) if \(\frac{22}{26.2} f_p < f \leq f_p\) \(S(f) = 0.08474 \frac{H^2_5}{f_p}\Bigl(26.2 - 22\frac{f}{f_p}\Bigr)\) if \(f_p < f \leq \frac{22}{26.2} f_p\) \(S(f) = 0\) else |
Last swell peak in the upper frequencies | \(S(f) = 0.08474 \frac{H^2_5}{f_p}\Bigl(26.2 \frac{f}{f_p} - 22\Bigr)\) if \(\frac{22}{26.2} f_p < f \leq f_p\) \(S(f) = 0.08474 \frac{H^2_5}{f_p}\Bigl(26.2 - 22\frac{f}{f_p}\Bigr)\) if \(f_p < f < f_0\) \(S(f) = 0.17 \frac{H^2_5}{f_p}(\frac{f}{f_0}^{-6})\) if \(f_0 \leq f\) (\(f_0 = 1.1f_p\)) |
2) The maximum wave height will occur at t = 2. *TP + 3*(TFIN-2.Tp)/4 (see DYNAMIC for TFIN).